企業郵箱 Call:015-92898531
E-mali:[email protected]

陝西省半導體行業協會

ssia

【芯技術】13種常用的功率半導體器件介紹

發布時間:2025-04-30

        电力电子器件(PowerElectronicDevice),又称为功率半导体器件,用于电能改换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承担电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。

640.jpeg

1.MCT(MOSControlledThyristor):MOS控制晶閘管


MCT是一種新型MOS與雙極複合型器件。如上圖所示。MCT是將MOSFET的高阻抗、低驅動圖MCT的功率、快開關速度的特征與晶閘管的高壓、大電流特型結合在一起,形成大功率、高壓、快速全控型器件。實質上MCT是一個MOS門極控制的晶閘管。它可在門極上加一窄脈沖使其導通或關斷,它由無數單胞並聯而成。它與GTR,MOSFET,IGBT,GTO等器件相比,有如下優點:

(1)電壓高、電流容量大,阻斷電壓已達3000V,峰值電流達1000A,最大可關斷電流密度爲6000kA/m2;

(2)通態壓降小、損耗小,通態壓降約爲11V;

(3)極高的dv/dt和di/dt耐量,dv/dt已達20kV/s,di/dt爲2kA/s;

(4)開關速度快,開關損耗小,開通時間約200ns,1000V器件可在2s內關斷;


2.IGCT(IntergratedGateCommutatedThyristors)


IGCT是在晶閘管技術的基礎上結合IGBT和GTO等技術開發的新型器件,適用于高壓大容量變頻系統中,是一種用于巨型電力電子成套裝置中的新型電力半導體器件。


IGCT是將GTO芯片與反並聯二極管和門極驅動電路集成在一起,再與其門極驅動器在外圍以低電感方法連接,結合了晶體管的穩定關斷能力和晶閘管低通態損耗的優點。在導通階段發揮晶閘管的性能,關斷階段呈現晶體管的特征。IGCT芯片在不串不並的情況下,二電平逆變器功率0.5~3MW,三電平逆變器1~6MW;若反向二極管分離,不與IGCT集成在一起,二電平逆變器功率可擴至4/5MW,三電平擴至9MW。


目前,IGCT已經商品化,ABB公司制造的IGCT中文产品的最高性能參數爲4[1]5kV/4kA,最高研制水平爲6kV/4kA。1998年,日本三菱公司也開發了直徑爲88mm的GCT的晶閘管IGCT損耗低、開關快速等優點保證了它能可靠、高功效地用于300kW~10MW變流器,而不需要串聯和並聯。


3.IEGT(InjectionEnhancedGateTransistor)電子注入增強柵晶體管


IEGT是耐壓達4kV以上的IGBT系列電力電子器件,通過采取增強注入的結構實現了低通態電壓,使大容量電力電子器件取得了飛躍性的發展。IEGT具有作爲MOS系列電力電子器件的潛在發展前景,具有低損耗、高速動作、高耐壓、有源柵驅動智能化等特點,以及采用溝槽結構和多芯片並聯而自均流的特征,使其在進一步擴大電流容量方面頗具潛力。另外,通過模塊封裝方法還可提供衆多派生中文产品,在大、中容量變換器應用中被寄予厚望。日本東芝開發的IECT使用了電子注入增強效應,使之兼有IGBT和GTO兩者的優點:低飽和壓降,安全工作區(吸收回路容量僅爲GTO的非常之一左右),低柵極驅動功率(比GTO低兩個數量級)和較高的工作頻率。器件采用平板壓接式電機引出結構,可靠性高,性能已經達到4.5kV/1500A的水平。


4.IPEM(IntergratedPowerElactronicsModules):集成電力電子模塊


IPEM是將電力電子裝置的諸多器件集成在一起的模塊。它第一是將半導體器件MOSFET,IGBT或MCT與二極管的芯片封裝在一起組成一個積木單元,然後將這些積木單元叠裝到開孔的高電導率的絕緣陶瓷襯底上,在它的下面依次是銅基板、氧化铍瓷片和散熱片。在積木單元的上部,則通過外表貼裝將控制電路、門極驅動、電流和溫度傳感器以及保護電路集成在一個薄絕緣層上。IPEM實現了電力電子技術的智能化和模塊化,大大降低了電路接線電感、系統噪聲和寄生振蕩,提高了系統功效及可靠性


5.PEBB(PowerElectricBuildingBlock)


電力電子積木PEBB(PowerElectricBuildingBlock)是在IPEM的基礎上發展起來的可處理電能集成的器件或模塊。PEBB並不是一種特定的半導體器件,它是依照最優的電路結構和系統結構設計的不同器件和技術的集成。典型的PEBB上圖所示。雖然它看起來很像功率半導體模塊,但PEBB除了包括功率半導體器件外,還包括門極驅動電路、電平轉換、傳感器、保護電路、電源和無源器件。PEBB有能量接口和通訊接口。通過這兩種接口,幾個PEBB可以組成電力電子系統。這些系統可以像小型的DC-DC轉換器一樣簡單,也可以像大型的分布式電力系統那樣複雜。一個系統中,PEBB的數量可以從一個到任意多個。多個PEBB模塊一起工作可以完成電壓轉換、能量的儲存和轉換、陰抗匹配等系統級功能,PEBB最重要的特點就是其通用性。


6.超大功率晶閘管


晶閘管(SCR)自問世以來,其功率容量提高了近3000倍。現在許多國家已能穩定生産8kV/4kA的晶閘管。日本現在已投産8kV/4kA和6kV/6kA的光觸發晶閘管(LTT)。美國和歐洲要紧生産電觸發晶閘管。近十幾年來,由于自關斷器件的飛速發展,晶閘管的應用領域有所縮小,但是,由于它的高電壓、大電流特征,它在HVDC、靜止無功補償(SVC)、大功率直流電源及超大功率和高壓變頻調速應用方面仍占有非常重要的地位。預計在今後若幹年內,晶閘管仍將在高電壓、大電流應用場合获得繼續發展。


現在,許多生産商可提供額定開關功率36MVA(6kV/6kA)用的高壓大電流GTO。傳統GTO的典型的關斷增量僅爲3~5。GTO關斷期間的不均勻性引起的“擠流效應”使其在關斷期間dv/dt必須限制在500~1kV/μs。爲此,人們不得不使用體積大、昂貴的吸收電路。另外它的門極驅動電路較複雜和要求較大的驅動功率。到目前爲止,在高壓(VBR》3.3kV)、大功率(0.5~20MVA)牽引、工業和電力逆變器中應用得最爲普遍的是門控功率半導體器件。目前,GTO的最高研究水平爲6in、6kV/6kA以及9kV/10kA。爲了滿足電力系統對1GVA以上的三相逆變功率電壓源的需要,近期很有也许開發出10kA/12kV的GTO,並有也许解決30多個高壓GTO串聯的技術,可望使電力電子技術在電力系統中的應用方面再上一個台階。


7.脈沖功率閉合開關晶閘管


該器件特別適用于傳送極強的峰值功率(數MW)、極短的持續時間(數ns)的放電閉合開關應用場合,如:激光器、高強度照明、放電點火、電磁發射器和雷達調制器等。該器件能在數kV的高壓下快速開通,不需要放電電極,具有很長的使用壽命,體積小、價格比較低,可望取代目前尚在應用的高壓離子閘流管、引燃管、火花間隙開關或真空開關等。


該器件獨特的結構和工藝特點是:門-陰極周界很長並形成高度交織的結構,門極面積占芯片總面積的90%,而陰極面積僅占10%;基區空穴-電子壽命很長,門-陰極之間的水平距離小于一個擴散長度。上述兩個結構特點確保了該器件在開通瞬間,陰極面積能获得100%的應用。另外,該器件的陰極電極采用較厚的金屬層,可承担瞬時峰值電流。


8.新型GTO器件-集成門極換流晶閘管


當前已有兩種常規GTO的替代品:高功率的IGBT模塊、新型GTO派生器件-集成門極換流IGCT晶閘管。IGCT晶閘管是一種新型的大功率器件,與常規GTO晶閘管相比,它具有許多優良的特征,例如,不用緩沖電路能實現可靠關斷、存貯時間短、開通能力強、關斷門極電荷少和應用系統(包括所有器件和外圍部件如陽極電抗器和緩沖電容器等)總的功率損耗低等。


9.高功率溝槽柵結構IGBT(TrenchIGBT)模塊


當今高功率IGBT模塊中的IGBT元胞通常多采用溝槽柵結構IGBT。與平面柵結構相比,溝槽柵結構通常采用1μm加工精度,從而大大提高了元胞密度。由于門極溝的存在,排除了平面柵結構器件中存在的相鄰元胞之間形成的結型場效應晶體管效應,同時引入了一定的電子注入效應,使得導通電阻下降。爲增加長基區厚度、提高器件耐壓創造了條件。因此近幾年來出現的高耐壓大電流IGBT器件均采用這種結構。


1996年日本三菱和日立公司分別研制成功3.3kV/1.2kA巨大容量的IGBT模塊。它們與常規的GTO相比,開關時間縮短了20%,柵極驅動功率僅爲GTO的1/1000。1997年富士電機研制成功1kA/2.5kV平板型IGBT,由于集電、發射結采用了與GTO類似的平板壓接結構,采用更高效的芯片兩端散熱方法。特別有意義的是,幸免了大電流IGBT模塊內部大批的電極引出線,提高了可靠性和減小了引線電感,缺點是芯片面積使用率下降。因此這種平板壓接結構的高壓大電流IGBT模塊也可望成爲高功率高電壓變流器的優選功率器件。


10.電子注入增強柵晶體管IEGT(InjectionEnhancedGateTrangistor)


近年來,日本東芝公司開發了IEGT,與IGBT一樣,它也分平面柵和溝槽柵兩種結構,前者的中文产品即將問世,後者尚在研制中。IEGT兼有IGBT和GTO兩者的某些優點:低的飽和壓降,寬的安全工作區(吸收回路容量僅爲GTO的1/10左右),低的柵極驅動功率(比GTO低2個數量級)和較高的工作頻率。加之該器件采用了平板壓接式電極引出結構,可望有較高的可靠性。


與IGBT相比,IEGT結構的要紧特點是柵極長度Lg較長,N長基區近柵極側的橫向電阻值較高,因此從集電極注入N長基區的空穴,不像在IGBT中那樣,順利地橫向通過P區流入發射極,而是在該區域形成一層空穴積累層。爲了保全該區域的電中性,發射極必須通過N溝道向N長基區注入大批的電子。這樣就使N長基區發射極側也形成了高濃度載流子積累,在N長基區中形成與GTO中類似的載流子分布,從而較好地解決了大電流、高耐壓的矛盾。目前該器件已達到4.5kV/1kA的水平。


11.MOS門控晶閘管


MOS門極控制晶閘管充分地使用晶閘管良好的通態特征、優良的開通和關斷特征,可望具有優良的自關斷動態特征、非常低的通態電壓降和耐高壓,成爲將來在電力裝置和電力系統中有發展前途的高壓大功率器件。目前世界上有十幾家公司在積極開展對MCT的研究。MOS門控晶閘管要紧有三種結構:MOS場控晶閘管(MCT)、基極電阻控制晶閘管(BRT)及射極開關晶閘管(EST)。其中EST也许是MOS門控晶閘管中最有希望的一種結構。但是,這種器件要真正成爲商業化的實用器件,達到取代GTO的水平,還需要相當長的一段時間。


12.砷化镓二極管


隨著變換器開關頻率的不斷提高,對快恢複二極管的要求也隨之提高。衆所周知,具有比矽二極管優越的高頻開關特征,但是由于工藝技術等方面的原因,砷化镓二極管的耐壓較低,實際應用受到局限。爲適應高壓、高速、高功效和低EMI應用需要,高壓砷化镓高頻整流二極管已在Motorola公司研制成功。與矽快恢複二極管相比,這種新型二極管的顯著特點是:反向漏電流隨溫度變化小、開關損耗低、反向恢複特征好。


13.碳化矽與碳化矽(SiC)功率器件


在用新型半導體材料制成的功率器件中,最有希望的是碳化矽(SiC)功率器件。它的性能指標比砷化镓器件還要高一個數量級,碳化矽與其他半導體材料相比,具有下列優異的物理特點:高的禁帶寬度,高的飽和電子漂移速度,高的擊穿強度,低的介電常數和高的熱導率。上述這些優異的物理特征,決定了碳化矽在高溫、高頻率、高功率的應用場合是極爲理想的半導體材料。在同樣的耐壓和電流條件下,SiC器件的漂移區電阻要比矽低200倍,即使高耐壓的SiC場效應管的導通壓降,也比單極型、雙極型矽器件的低得多。同时,SiC器件的開關時間可達10nS量級,並具有非常優越的FBSOA。


SiC可以用來制造射頻和微波功率器件,各種高頻整流器,MESFETS、MOSFETS和JFETS等。SiC高頻功率器件已在Motorola公司研發成功,並應用于微波和射頻裝置。GE公司正在開發SiC功率器件和高溫器件(包括用于噴氣式引擎的傳感器)。西屋公司已經制造出了在26GHz頻率下工作的甚高頻的MESFET。ABB公司正在研制高功率、高電壓的SiC整流器和其他SiC低頻功率器件,用于工業和電力系統。


(该文章转载于网络,有如侵权,请聯系我們删除。).                     (转自:道合順大數據Infinigo)



上一篇:陝西省半導體應用産業聯盟企業參加陝西省國家戰略性新興産業集群銀企合作對接會

下一篇:西安電子信息産業創新聯盟參加西安市電子信息和生物醫藥産業發展工作推進會

接洽电话:86-29-85269966     传真:86-29-85263199

郵箱地址:[email protected]

公司地址:陝西省西安市高新區錦業路125號西安半導體産業園A座2層 查看地圖

公司廠址:陝西省西安市高新區西太路

在線咨詢

咨詢熱線015-92898531

陝西半導體先導技術中心有限公司版權所有陝ICP備19002479號-1 網站建設:凡高網絡

威海祺翔节能科技有限公司--致力于第三代半导体和先进半导体关键技术研发和产品工程化